21 research outputs found

    Pathway and network analysis of more than 2500 whole cancer genomes.

    Get PDF
    The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments

    Analyses of non-coding somatic drivers in 2,658 cancer whole genomes.

    Get PDF
    The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available

    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis.

    Get PDF
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis

    Global network construction.

    No full text
    <p><b>(a)</b> Conversion of binary data to a network representation. All continuous data are mapped to a binary representation with ‘1’ (colored squares) corresponding to a gene with a value deviating from normal for a particular sample. Each ‘1’ in the binary datasets is converted to an undirected link (solid line) between a gene node and a sample node. Prior knowledge, derived from public gene interaction repositories, is available in the form of undirected links (dashed grey line) between genes. Characters a-g correspond to gene IDs, S<sub>1</sub>-S<sub>3</sub> represent sample IDs. <b>(b)</b> Construction of the global network. The network representations of the binary datasets and the prior knowledge network are merged to constitute a single comprehensive network representation. Gene nodes originating from the input datasets are connected to the corresponding gene in the prior knowledge interaction network (dashed yellow lines). <b>(c)</b> The resulting adjacency matrix representation of the undirected global network. For clarity, individual gene and sample identifiers are omitted. NET (grey) = genes from the prior knowledge interaction network, S (dark blue) = samples, EXP (green) = genes from the gene expression dataset, CNV (pink) = genes from the copy number dataset, MUT (light blue) = mutated genes, MET (orange) = methylated genes. <b>(d)</b> The similarity matrix derived from the adjacency matrix, indicating the parts of the similarity matrix that are relevant for the pathway ranking task.</p

    The 20 highest ranking pathways for the two most extreme ovarian cancer survival-based subtypes.

    No full text
    <p>The contribution of each component to the total score is indicated in a different color bar: mRNA expression (dark blue), copy number (light blue), mutation (green) and methylation (yellow).</p

    The 20 highest ranking pathways for each of the four breast cancer subtypes.

    No full text
    <p>The aggregate score assigned to each pathway can be decomposed into 4 probabilistic components. The contribution of each component to the total score is indicated in a different color bar: mRNA expression (dark blue), copy number (light blue), mutation (green) and methylation (yellow).</p

    Pathway relevance scoring.

    No full text
    <p>Given a subset of the global similarity matrix (S<sub>exp</sub> S<sub>cnv</sub>, S<sub>mut</sub>, S<sub>met</sub>, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133503#pone.0133503.g001" target="_blank">Fig 1</a>) and a set of genes (a,b,d) constituting a pathway <i>P</i>, a score for each input dataset is calculated by first removing genes from S<sub>exp</sub> S<sub>cnv</sub>, S<sub>mut</sub>, S<sub>met</sub> that do not belong to the pathway and then taking the average of all remaining values in S<sub>exp</sub> S<sub>cnv</sub>, S<sub>mut</sub>, S<sub>met</sub>. This process is repeated for <i>n</i> randomly generated gene sets (with the same number of genes as the pathway <i>P</i>) yielding <i>n</i> scores for each input dataset. The random pathway scores are used to calculate a <i>p</i>-value for obtaining the pathway scores purely by chance. The resulting <i>p</i>-values are multiplied, resulting in a single aggregated pathway score.</p
    corecore